
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Hacking the CAN Bus: Basic Manipulation of a
Modern Automobile Through CAN Bus Reverse
Engineering
The modern automobile is an increasingly complex network of computer systems. Cars are no longer analog,
mechanical contraptions. Today, even the most fundamental vehicular functions have become computerized. And at
the core of this complexity is the Controller Area Network, or CAN bus. The CAN bus is a modern vehicle's
central nervous system upon which the majority of intra-vehicular communication takes place. Unfortunately,
the CAN bus is also inherently insecure. Designed more than 30 years ago, the CAN bus fai...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/652

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus:
Basic Manipulation of a Modern Automobile

Through CAN Bus Reverse Engineering

GIAC (GCIA) Gold Certification

Author: Roderick Currie, roderick.h.currie@gmail.com
Advisor: Stephen Northcutt

Accepted: May 18, 2017

Abstract

The modern automobile is an increasingly complex network of computer systems. Cars
are no longer analog, mechanical contraptions. Today, even the most fundamental
vehicular functions have become computerized. And at the core of this complexity is the
Controller Area Network, or CAN bus. The CAN bus is a modern vehicle’s central
nervous system upon which the majority of intra-vehicular communication takes place.
Unfortunately, the CAN bus is also inherently insecure. Designed more than 30 years
ago, the CAN bus fails to implement even the most basic security principles. Prior
scholarly research has demonstrated that an attacker can gain remote access to a vehicle’s
CAN bus with relative ease. This paper, therefore, seeks to examine how an attacker
already inside a vehicle’s network could manipulate the vehicle by reverse engineering
CAN bus communications. By providing a reproducible methodology for CAN bus
reverse engineering, this paper also serves as a basic guide for penetration testers and
automotive security researchers. The techniques described in this paper can be used by
security researchers to uncover vulnerabilities in existing automotive architectures,
thereby encouraging automakers to produce more secure systems going forward.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 2

1. Introduction
The Controller Area Network, or CAN bus, has been the core internal network

bus for passenger automobiles for over 30 years. While networking technology has

advanced significantly since CAN’s introduction in the 1980s, the CAN bus itself has

remained largely unchanged. According to automotive security researcher and author

Craig Smith, “vehicle technologies haven’t kept pace with today’s more hostile security

environment, leaving millions vulnerable to attack” (Smith, 2016). Since CAN predates

the advent of the “World Wide Web” (CERN, 2013) and wireless networking protocols,

it should come as no surprise that CAN was not designed to be secure from intrusion.

What is surprising, however, is that automakers are still relying on such an archaic and

inherently insecure platform in the era of on-board Wi-Fi, integrated cellular

connectivity, Bluetooth, and even autonomous driving capability.

Now, more than ever before, as automakers push rapidly towards fully

autonomous vehicles, it is critical that vehicle owners and passengers can trust that

vehicles are secure from cyber-attack. High-profile vehicle security researcher Charlie

Miller recently remarked that “in an autonomous vehicle […] the computers are now

even more in charge” (as cited in Greenberg, 2017). Miller also noted that while today’s

cars allow the driver to override autonomous functions, the fully-autonomous car of the

future will leave passengers “totally at the mercy of the vehicle” (as cited in Greenberg,

2017). Securing vehicular networks, therefore, must be given top priority by auto

manufacturers. The stakes are simply too high to leave security as an afterthought.

There is widely agreed upon axiom in the information security industry that

“security by obscurity is no security at all.” And this certainly holds true when dealing

with the CAN bus. The “security by obscurity” model has only lasted for this long

because there is a general lack of published research exploring CAN bus vulnerabilities.

The goal of this research project, therefore, is to demonstrate the overall insecurity of the

CAN bus architecture and to provide a reproducible method for reverse engineering the

CAN bus to encourage others to undertake similar research. By exposing vulnerabilities

in existing automotive architectures, the security community can encourage automakers

to produce more secure systems going forward.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 3

2. Recommended Reading
This paper covers the technical aspects of car hacking and CAN bus

manipulation. For a more general, high-level overview of CAN bus technology, I

recommend consulting my earlier GIAC Gold paper entitled Developments in Car

Hacking (Currie, 2015) as a reference point and baseline. In addition to providing an

overview of CAN, that paper explores some recent high-profile car hacking

demonstrations and scholarly research on the topic of automotive hacking. I have also

proposed some possible solutions to the security challenges facing CAN in my other

recent GIAC Gold paper, The Automotive Top 5: Applying the Critical Controls to the

Modern Automobile (Currie, 2016).

3. Why Hack Cars?
Before delving into the technical details of how to perform CAN bus hacking, it is

important to first consider the rationale for hacking cars. Ethical hackers have targeted

traditional computer systems for decades. These so-called “white hat” hackers perform

attacks against systems in order to expose vulnerabilities so that systems may be better

secured going forward.

The “security by obscurity” model, which is a favorite of the automotive industry,

simply does not work. Rather than investing in proactive security solutions, automakers

have a tendency to cut corners on security in favor of cost savings. This is a decision

often made in the corporate boardroom. Until malicious vehicle hacking becomes more

commonplace, automakers believe it does not warrant a significant amount of budget or

attention. However, ignoring vulnerabilities or attempting to hide them does not lead to

more secure systems. The only way to overcome this flawed model is through increased

public exposure of security vulnerabilities. One of the goals of this paper is to increase

awareness of the significant degree to which modern automotive systems are insecure.

Car hacking can also be thought of as a type of security audit. By auditing the

security of one’s own vehicle, it is possible to gain an improved understanding of the

ways in which the vehicle might be vulnerable to attack and to take precautions

accordingly. Most computer users would not trust a new web browser or a new operating

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 4

system if they knew it had not undergone extensive penetration testing by the developer.

Why, then, do we entrust our safety and the safety of our loved ones to automotive

systems that are not audited for security by their manufacturers?

Attempting to “hack” a car can seem like a monumental task. But when done

safely and with a solid understanding of the underlying systems involved, it can be a very

rewarding experience. Performing a successful car hack is not only intrinsically

rewarding, but when documented and shared with the security research community, also

serves to promote the creation of more secure systems in the future. This paper provides

the background knowledge needed to undertake a basic car hacking project centered

around CAN bus manipulation. While the information and techniques covered in this

paper may not be groundbreaking, it is my hope that this paper inspires others to

undertake car hacking projects of their own to further the cause for vehicular cyber

security. Historically, when vehicular security vulnerabilities have been disclosed by

researchers, the auto manufacturers have then been forced to address the problems by

better securing their vehicles. By uncovering vulnerabilities in vehicular systems, the

security research community can have a positive overall impact on the field of

automotive cyber security.

4. Existing Research
It must be emphasized that this project does not attempt to recreate a full vehicle

attack model from start to finish. This project assumes that access to the vehicle’s internal

network has already been established. It is widely accepted in the automotive security

research community that vehicles can be hacked through numerous different external

interfaces, and that doing so is a relatively trivial undertaking.

In recent years, automotive cyber security has begun to receive increased public

attention. This is due in large part to several high-profile examples of vehicle hacking

that were picked up by the mainstream media. In 2011, a team of researchers from the

University of Washington and the University of California, San Diego, successfully

demonstrated that “remote exploitation is feasible via a broad range of attack vectors

including mechanics’ tools, CD players, Bluetooth and cellular radio” (Checkoway et al.,

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 5

2011). This research brought to light just how many different potential points of entry

were available on a typical, modern car.

A few years later, in 2015, security researchers Charlie Miller and Chris Valasek

demonstrated a remote exploitation of an unaltered passenger vehicle via the vehicle’s

cellular interface. This attack took advantage of a vulnerability in the Sprint cellular

network and the onboard Uconnect infotainment system of a 2014 Jeep Cherokee (Miller

& Valasek, 2015). The attack allowed Miller and Valasek to remotely take over the

Jeep’s steering, transmission, and brakes, the aftermath of which is shown in Figure 1:

Figure 1: Jeep Cherokee in a Ditch after Brakes Were Disabled (Greenberg, 2015)

In September 2016, a group of researchers from the Keen Security Lab

successfully demonstrated an attack on a Tesla Model S. The team performed a wireless

attack that required no physical access to the Tesla vehicle, and that ultimately allowed

them to partially take over control of the vehicle. The attack required the Tesla to be

connected to a malicious Wi-Fi hotspot, and took advantage of a vulnerability in the

vehicle’s integrated web browser (Golson, 2016). As modern vehicles such as the Tesla

Model S incorporate connectivity features such as on-board Wi-Fi and integrated web

browsers, this only serves to broaden the attack surface and create new potential points of

entry for attackers.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 6

This project, therefore, seeks to build upon existing vehicle security research by

exploring vulnerabilities within a vehicle’s internal network rather than attempting to

infiltrate the vehicle’s perimeter defenses.

5. Hypothesis
The purpose of this project is to demonstrate that the modern internal vehicle

network is generally insecure and can be manipulated with relative ease by utilizing a

laptop computer, some inexpensive cables and adapters, and freely available software.

Due to a lack of proper device authentication on the CAN bus, an ordinary laptop

computer will be allowed to join and communicate on the CAN bus as if it were an

authorized CAN controller. And due to a lack of message encryption, it will be possible

to sniff and decode CAN messages to determine their function. Ultimately, sending

modified CAN messages out over the CAN bus will result in the vehicle processing these

reverse-engineered messages as if they were legitimate CAN traffic.

6. Legality of Car Hacking
Despite the various published reports of car hacking by security researchers,

manipulation of automotive security systems is not without its legal ramifications. Before

making any attempt to reverse engineer the CAN bus, it is important to understand the

legality of doing so.

6.1. Volkswagen AG vs. the Security Community
In 2012, a group of security researchers from Radboud University in the

Netherlands and the University of Birmingham in the United Kingdom discovered a

significant security flaw in the engine immobilizer systems of vehicles from a handful of

different manufacturers (Gallagher, 2015). In the spirit of information sharing, the team

reached out to the automakers to inform them of the vulnerability. The team also shared

their intent to publish their findings publicly at an upcoming security conference. This

was worrying to the automakers, particularly Volkswagen AG. The list of impacted cars

included vehicles from Volkswagen’s Porsche, Audi, Bentley, and Lamborghini brands

(Gallagher, 2015). Volkswagen was concerned that public disclosure of the vulnerability

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 7

would benefit car thieves, and would require an expensive recall of all affected models to

remediate the problem. Before the research team could publish its findings, however,

Volkswagen filed a lawsuit to block the publication of the paper.

What followed was more than two years of litigation as Volkswagen used the

legal system to keep the vulnerability undisclosed. In 2013, a British high court imposed

an injunction on the researchers to legally prohibit them from sharing their findings

(O’Carroll, 2013). The University of Birmingham, at the time, responded to the

injunction by saying they were “disappointed with the judgment which did not uphold the

defense of academic freedom and public interest” (O’Carroll, 2013). Similarly, Radboud

University responded that “the decision of the English judge imposes severe restrictions

on the freedom of academic research in a field that is highly relevant to society (cyber

security)” (as cited in O’Carroll, 2013). Despite the team’s research being of public

importance, Volkswagen was unwilling to back down and face the financial burden

associated with improving the security of its vehicles.

Bound by the judge’s ruling, the research team was forced to withhold its findings

and come to an understanding with Volkswagen before the injunction could be lifted. It

was not until two years later, in 2015, that Volkswagen agreed to allow the team to

publish a redacted version of their paper with certain, specific details of the attack

removed. The paper, entitled “Dismantling Megamos Crypto: Wirelessly Lockpicking a

Vehicle Immobilizer” (Verdult, Garcia, & Ege, 2015), was presented at the USENIX

security conference in Washington, DC that year.

6.2. The Digital Millennium Copyright Act (DMCA)
Until recently, car hacking – even for the purposes of security research – was

illegal in the United States. The Digital Millennium Copyright Act (DMCA), which was

signed by President Clinton in 1998, generally prohibits modifying copyrighted software

or bypassing access control technologies (U.S. Copyright Office, 1998). While the

DMCA was originally intended to protect publishers of traditional computer applications,

it nonetheless also legally extended to the systems found in modern automobiles. Section

1201 of the DMCA effectively prohibits the reverse engineering of computer software for

security research purposes, even if the researcher has purchased the software and owns

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 8

the device on which the software runs (Greenberg, 2016). In fact, John Deere, the well-

known manufacturer of agricultural equipment, recently made a claim under the DMCA

that farmers do not truly own their tractors, but rather receive “an implied license for the

life of the vehicle to operate the vehicle” (as cited in Wiens, 2015). Similarly, General

Motors commented to the U.S. Copyright Office that vehicle owners mistakenly

“conflate ownership of a vehicle with ownership of the underlying computer software in

a vehicle” (as cited in Wiens, 2015). The Digital Millennium Copyright Act has,

therefore, long served as a deterrent to automotive security researchers.

Thankfully, in October of 2015, the U.S. Copyright Office signed into law a new

series of exemptions to the DMCA that allow “good-faith” security research “in a

controlled environment designed to avoid any harm to individuals or to the public” (as

cited in Greenberg, 2016). Due to a one-year delay in implementation, the DMCA

exemptions did not legally take effect until October 2016. Now that “car hacking” for the

purposes of security research is no longer prosecutable under copyright law, there is no

longer a looming fear of lawsuits hanging over the security research community. It is

important to note that the DMCA exemptions still do not permit modification of a

vehicle’s telematics or infotainment systems, nor do they permit modifications that would

violate any other laws such as emissions regulations (O’Kane, 2015).

Predictably, auto manufacturers were opposed to the DMCA exemptions. Various

organizations voiced objections to the Copyright Office, including the Association of

Equipment Manufacturers, the Association of Global Automakers, the Auto Alliance,

General Motors, and John Deere (O’Kane, 2015). The automakers claimed that

unrestricted access to vehicles’ software could present "serious public health, safety and

environmental concerns" (as cited in O’Kane, 2015). Security researchers have long

recognized, however, that legislation such as the DMCA does not deter criminals or those

with illegal or malicious intent. The DMCA, until recently, only served to stymie “good-

faith” security research that would have benefitted consumers and improved the security

of the auto industry as a whole.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 9

roderick.h.currie@gmail.com	

7. Safety First
Car hacking is inherently dangerous. When interacting with a vehicle’s CAN bus,

it is important never to lose sight of the fact that the target system is a two-ton metal

object capable of reaching dangerous speeds in a short amount of time. Unlike traditional

computer “hacking” where a mistake could lead to corruption of the operating system or

a Blue Screen of Death, a car hacking mistake could lead to serious injury or actual

death. Therefore, it is important to practice car hacking in a safe and controlled manner.

Because the CAN bus is where many of a vehicle’s critical control units can be

found, there is a very real possibility of provoking an unintended response from the

engine, brakes, transmission, or other components of the vehicle while experimenting

with CAN messages. Even if the engine or transmission are not the intended target

systems, it is important to plan for the worst.

The best approach to safe car hacking is to raise the vehicle so that its driving

wheels are no longer in contact with the ground, as seen in Figure 2. This will all but

eliminate any concerns of unintended acceleration. This can be accomplished either by

utilizing a vehicle lift, or by manually jacking up the vehicle and placing it on jack

stands. It is important to become familiar with the target vehicle to know whether the

vehicle sends power to the front wheels, rear wheels, or to all four.

Figure 2: A Car Safely Raised Off the Ground (Twelfth Round Auto, 2017)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 10

It is also important to research – in advance – how the target vehicle can be shut

off in the event of an emergency. Even with the car on jack stands, it is still important to

have a shutdown plan to avoid damage from unintentionally over-revving the engine. For

vehicles with older turn-key ignitions, turning the ignition to the “LOCK” or “ACC”

position will shut off the car’s engine regardless of what gear the car is in. But for newer

cars with push-button ignitions, the “STOP/START” button will generally not respond to

a single press if the vehicle is not in neutral or park. On these vehicles, the emergency

shutoff procedure can vary from two or three quick presses of the ignition button, to a 3-

second long hold of the button. Different makes and models of vehicles behave in

different ways, but the owner’s manual is typically a good place to find information on

vehicle-specific emergency shutoff procedures.

8. Familiarization with the Target Vehicle
Just as it is essential to become familiar with the target vehicle for safety reasons,

it is also wise to learn about the target vehicle’s underlying systems before attempting to

hack them.

As will be discussed later in this paper, the Controller Area Network (CAN) bus

is a government-mandated standard found on almost all newer vehicles. However, to

suggest that CAN bus hacking would yield the same results on all vehicles would be an

oversimplification. The reality is that, beyond its mandatory diagnostic uses, CAN is

implemented differently by each vehicle manufacturer. Some vehicles may utilize only

one CAN bus, whereas others may have several, separate CAN buses. Many vehicles also

feature other bus types, including LIN (Local Interconnect Network), FlexRay, MOST

(Media Oriented Systems Transport), K-Line, SAE J1850, and more (Talbot & Ren,

2008). In fact, stumbling across manufacturer-specific proprietary bus types is not

uncommon. It is, therefore, necessary to perform some background research on the target

vehicle to learn what bus types are present.

Technical information such as bus types and bus locations can usually be found in

third-party service manuals or automotive repair software resources such as ALLDATA

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 11

(2017) or Mitchell1 (2017). While somewhat expensive, the data available from these

resources can be extremely valuable to a vehicle security researcher.

In the interest of simplicity and scope control, this paper and the car hacking

project it describes will focus solely on the CAN bus. This paper describes a technique

for utilizing CAN tools to record, replay, and reverse engineer CAN messages to

manipulate a vehicle. The CAN message reverse engineering techniques described in this

paper go beyond existing research on the topic. The same general concepts presented here

can be applied to other bus types, but additional tools and interfaces may be required.

9. About CAN
For a deeper exploration of the history and background of the Controller Area

Network, please consult my previous GIAC Gold paper entitled Developments in Car

Hacking (Currie, 2015). Nonetheless, this paper would be incomplete without at least a

brief refresher of the CAN frame breakdown. Figure 3 below shows the structure of a

standard CAN data frame:

Figure 3: Complete CAN Frame (Wikipedia, 2014)

For the purpose of the security testing being demonstrated in this paper, the main

focus will be on the CAN arbitration ID (shown in green) and the CAN data (shown in

red). The CAN arbitration ID is an 11-bit field that is used to identify different devices on

the CAN bus and to prioritize messages. In order to craft CAN packets that the vehicle

will process, it is first necessary to sniff out the valid CAN identifiers of devices on the

bus. Later, those CAN identifiers can be reused to spoof legitimate devices. The other

relevant field, the CAN data field, can be anywhere from 0 to 64 bits (8 bytes) in length.

It is the CAN data field that tells the receiving device what function to perform. Gaining

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 12

an understanding of the target vehicle’s message format again requires sniffing legitimate

traffic to decipher the vehicle’s CAN message data.

10. Connecting via OBD-II
The Onboard Diagnostic port, also known as the OBD-II port, represents the most

direct interface to a vehicle’s CAN bus. Hacking a car via the OBD-II port has received

criticism in the past because it is an unrealistic attack model. Certainly, there is a

consensus among automotive security researchers that a real-world attacker is unlikely to

have physical OBD-II access. However, there is also a consensus that the modern,

connected car has a very broad attack surface and features a wide array of possible entry

points. The remote exploitation of a vehicle is certainly more dramatic and tends to

garner media attention. Nonetheless, performing research via direct, wired access to the

OBD-II port is still a viable means of determining how a vehicle can be manipulated after

access has been established, and should not be labeled as an unrealistic or incomplete

model. Any manipulation of the CAN bus that can be performed via OBD-II can also be

performed remotely against vehicles with remote CAN connectivity.

10.1. OBD-II Background
The California Air Resources Board (CARB) has long led the push for a self-

diagnostic system to be required on all motor vehicles to aid in emissions testing and

monitoring. In 1991, CARB rolled out an Onboard Diagnostic (OBD) mandate for all

new vehicles sold at the time. However, there was no standard for the data link port,

protocol, or port location. By 1994, CARB standardized the current iteration of OBD,

known as OBD-II, and mandated that it be included on all new cars sold in California. By

1996, OBD-II was mandated nationwide in the United States (Lyons, 2015).

Included in the OBD-II specification is a special type of data link connector with

a standard pinout. The standard OBD-II pinout includes a direct link to the CAN bus. For

an automotive security researcher, the OBD-II port is essentially an unprotected backdoor

into a vehicle’s most sensitive embedded systems. While most backdoors are typically at

least protected by a password, the OBD-II port is wide open to anyone with the

appropriate hardware.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 13

roderick.h.currie@gmail.com	

On most vehicles, the OBD-II port is usually found underneath the dashboard.

The OBD-II standard requires the port to be located within three feet of the driver and to

be accessible without the need for tools (B&B Electronics, 2011). Figure 4 shows where

the OBD-II port can usually be found, and what it looks like:

Figure 4: The OBD-II Port on a 2005 Nissan Titan (Nissanhelp, 2011)

10.2. OBD-II Pinout
To better understand how the OBD-II port grants unrestricted access to the CAN

bus, it is worth delving deeper into the OBD-II standard connector pinout. It should also

be noted that CAN became a mandatory part of the OBD-II standard on all 2008 and

newer light vehicles. Some older vehicles may not utilize CAN, but may have other,

similar bus types instead. Figure 5 shows a color-coded diagram of the OBD-II standard

pinout and Figure 6 lists the standard assignments for each pin:

Figure 5: The OBD-II Pinout

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 14

Pin Function Pin Function
1 Manufacturer Specific 9 Manufacturer Specific
2 J1850 Bus (+) 10 J1850 Bus (-)
3 Manufacturer Specific 11 Manufacturer Specific
4 Ground 12 Manufacturer Specific
5 Ground 13 Manufacturer Specific
6 CAN High 14 CAN Low
7 K-Line (ISO 9141-2) 15 L-Line (ISO 9141-2)
8 Manufacturer Specific 16 12V Battery Power

Figure 6: OBD-II Pin Assignments

The OBD-II pinout diagram and table above highlight some of the important

standard pins on the OBD-II connector. For the purposes of this paper, the J1850 bus

(pins 2 and 10) and ISO 9141-2 bus (pins 7 and 15) are out of scope, but they are

essentially diagnostic buses that operate in a similar manner to CAN. As noted in the

table above, there are also various pins dedicated to manufacturer-specific bus types.

Depending on the make and model of the vehicle being targeted, it may be necessary to

delve into those other bus types to gain greater access to the vehicle’s internal systems.

Other noteworthy pins are pins 4 and 5, which are dedicated ground pins, and pin 16,

which provides a constant supply of 12-volt power from the vehicle’s battery. The

purpose of pin 16 is to provide power to scan tools being plugged into the OBD-II port,

so that they do not require an external power source.

The most important pins within the scope of this paper, however, are pins 6 and

14, which are dedicated to the Controller Area Network, or CAN bus. The terms “CAN

High” (CAN_H) and “CAN Low” (CAN_L) are derived from the way in which CAN

messages are physically transmitted. When the CAN bus is idle, both wires carry 2.5V of

electricity. But when transmitting data, the CAN High wire increases to 3.75V and the

CAN Low wire drops to 1.25V, creating a 2.5V voltage differential between the two

wires (Nakade et al., 2015). It is this voltage differential on which CAN communication

is based, and which makes the CAN bus so tolerant to electrical noise and interference.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 15

11. Car Hacking Hardware
Although the OBD-II port is an unsecured interface, car hacking via OBD-II is

not quite as simple as plugging a computer directly into the OBD-II port. There are

OBD-II scanners, commonly used by mechanics, which can be plugged directly into the

OBD-II port. However, the capability of these devices usually does not extend beyond

reading and clearing diagnostic codes.

In order to utilize a laptop computer to communicate on the CAN bus, some

additional hardware peripherals are necessary. Figure 7 below shows the hardware that

was selected to communicate with the target vehicle:

Figure 7: The Basic Hardware Required to Hack the CAN Bus

11.1. Human Interface
Since car hacking via OBD-II requires a physical connection to the car, it is best

carried out from inside the vehicle. Therefore, a laptop computer is necessary for sniffing

and crafting packets. When selecting appropriate hardware, it is important to consider

software compatibility. As will be discussed later in the paper, the chosen operating

system for this car hacking project is Ubuntu 12.04. And so, it is critical to choose a

laptop that can run this O/S in a stable manner without any hardware conflicts.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 16

The specific laptop ultimately selected was an older (circa 2011) Lenovo

ThinkPad T420 (Lenovo, 2015). This laptop has an Intel Core i5-2520M 2.5GHz dual-

core processor, 4GB of RAM, and a 128GB solid-state drive. Most importantly, the

ThinkPad T420 has been certified by Ubuntu as supporting the Ubuntu 12.04 LTS 32-bit

operating system (Canonical, 2011).

11.2. CAN to USB Interface
There are numerous CAN to USB interface products available on the market.

Some are considerably more expensive than others. Because the device will act as the

laptop computer’s interface to the CAN bus, it is more complex than a simple adapter

cable; it is an intelligent device that performs on-board processing of CAN packets. The

interface of choice for this undertaking is CANtact, created by vehicle security researcher

Eric Evenchick, and priced at $59.95 (Evenchick, 2015). CANtact was chosen for its

affordability, cross-platform compatibility, and its open source nature. Throughout its

development, Evenchick has kept the CANtact project entirely open source by making all

of the design files, schematics, and code freely available online. Figure 8 shows a close-

up view of the CANtact CAN to USB interface device:

Figure 8: The CANtact CAN to USB Interface Device (Evenchick, 2015)

CANtact can best be thought of as a network interface card, allowing the laptop

computer to join and participate on the Controller Area Network. The CANtact device is

seen by the computer’s operating system as a CAN interface, and the computer is able to

configure the settings of the interface as needed to communicate with the target vehicle.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 17

Once a link is established, the CANtact interface will pass CAN packets between the

vehicle and the computer. CANtact draws its power from the computer via USB, so no

external power source is required for the device.

11.3. Additional Cables
Getting the vehicle’s CAN messages from the OBD-II port to the CANtact device

requires an OBD-II to DB9 serial cable (SparkFun, 2015). This is nothing more than a

“dumb” cable that swaps the OBD-II output to a serial pinout that can be received by the

CANtact hardware device (or other hardware interface). The SparkFun OBD-II to DB9

cable puts the CAN High signal (OBD-II pin 6) onto DB9 pin 3, and the CAN Low signal

(OBD-II pin 14) onto DB9 pin 5.

Once the CAN messages from the vehicle have been processed by the CANtact

device, they are output through a USB Type B port. This, therefore, requires a USB-B to

USB-A cable (Amazon, 2015) to pass the USB data from the CANtact interface to the

laptop computer. USB-B to USB-A cables are also commonly used to communicate with

printers, scanners, and other peripheral devices.

12. Software
With the appropriate hardware in place to bridge the gap between the laptop

computer and the CAN-based systems of a modern automobile, it is also necessary to

download and install the appropriate software to enable computer-to-vehicle

communication.

12.1. Ubuntu 12.04
When selecting an operating system for a car hacking laptop, it is important to

ensure that the O/S is fully compatible with the chosen computer system’s hardware.

Particularly when dealing with a Linux O/S, it should not be assumed that just any

distribution of Linux can be installed on any given laptop. If a laptop was originally

shipped with a Windows O/S, it is not uncommon to experience hardware incompatibility

when redeploying Linux on the system. Ubuntu 12.04 LTS 32-bit was chosen due to its

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 18

certification for the laptop being used in this project, the Lenovo ThinkPad T420

(Canonical, 2011).

It is also worth noting that car hacking does not explicitly require a Linux

operating system. Car hacking can be performed on Windows. There are GUI-driven

Windows-based applications available, such as CANdo from Netronics (2015) or

CanKing from Kvaser (2014). However, in general, the vehicle security research

community has favored Linux and, therefore, many of the open-source tools and devices

available are designed primarily for use with Linux.

Another important reason to utilize Linux for car hacking is the Linux

SocketCAN package. SocketCAN, which is explained in more detail below, is the Linux

standard implementation of CAN protocols and drivers. SocketCAN has been part of the

mainline Linux kernel since the release of Kernel 2.6.25 in April 2008 (Kernel.org,

2016). Therefore, in order to utilize SocketCAN, it is imperative to choose an O/S that

runs Kernel 2.6.25 or later.

12.2. SocketCAN
Since 2008, the SocketCAN package has allowed Linux to offer native support

for CAN devices at the network layer. SocketCAN, originally known as the “Low Level

CAN Framework” (Hartkopp & Thürmann, 2006) was developed by Volkswagen AG

and contributed to the Linux kernel as an open source framework. Among the stated

goals of the Low Level CAN Framework project were the enablement of easy access

between Linux applications and the CAN communication layers, and the creation of a

package that was modular in design to enable reuse on other projects (Hartkopp &

Thürmann, 2006). SocketCAN was also designed to make CAN communication “as far

as possible similar to the ordinary use of TCP/IP sockets” (Hartkopp & Thürmann, 2006).

And this is precisely what makes SocketCAN so versatile. By utilizing the tried and true

Berkeley sockets API, which originated in 1983 (Kernel.org, 2016), CAN sockets in

Linux behave in the same way as traditional TCP/IP sockets. This greatly reduces the

learning curve when communicating with CAN devices. The diagram below in Figure 9

shows how SocketCAN fits into the Linux networking stack:

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 19

Figure 9: SocketCAN Implementation in Linux (Wikipedia, 2009)

SocketCAN consists of two main parts: a protocol family, known as PF_CAN,

and a collection of networking drivers for various CAN devices (Kleine-Budde, 2012).

The PF_CAN protocol family is similar to the familiar PF_INET protocol family used for

Internet protocol communication in Linux. SocketCAN also adds a new Ethernet protocol

type, ETH_P_CAN, that allows CAN packets to be routed through the traditional Linux

network layer (Hartkopp & Thürmann, 2006). This allows CAN network device drivers

to implement the same standardized network driver model as Ethernet devices (Kleine-

Budde, 2012).

In addition to the CAN device drivers found in the SocketCAN package,

SocketCAN also provides a collection of useful user-space applications and utilities,

known as can-utils, that can be very helpful for car hacking.

12.3. can-utils
The SocketCAN package includes an array of useful tools, but there are several

can-utils that are particularly useful when communicating with the CAN bus of a modern

vehicle.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 20

roderick.h.currie@gmail.com	

12.3.1. candump

As its name implies, candump will dump all CAN packets directly to the console.

When listing to an active vehicle’s CAN bus, the raw output of candump will likely be

overwhelming and of little use. However, candump accepts various filters to increase the

usefulness of the output.

Usage: candump can0

12.3.2. cansend

Another utility with a relatively self-descriptive name, cansend allows a single

packet to be sent out onto the CAN bus. When using cansend, it is necessary to specify

the interface, the CAN identifier, and the CAN data.

Usage: cansend can0 123#1122334455667788

In the above usage example, a CAN frame will be sent with identifier 123 and

data bytes 11, 22, 33, 44, 55, 66, 77, and 88 (Linklayer, 2016). The cansend utility

assumes all values are hexadecimal.

12.3.3. cansniffer

Arguably the most useful of the can-utils when attempting to reverse engineer

vehicle CAN bus messages, cansniffer works like candump but performs real-time

filtering of the on-screen output. By filtering out any repetitive CAN messages containing

data that remains unchanged, cansniffer displays only CAN messages for which the data

is changing in real-time. This is particularly useful when performing CAN

reconnaissance while physically operating the vehicle controls. For example, locking and

unlocking the vehicle’s doors while running cansniffer should make it easy to zero in on

which messages and which bytes specifically control the locking functionality. By

filtering out most of the “noise,” cansniffer allows a security researcher to focus on only

the relevant CAN packets.

Usage: cansniffer can0

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 21

12.4. Wireshark with SocketCAN
Wireshark also offers support for SocketCAN devices. Wireshark can be used to

display real-time CAN bus output, similar to candump, and can filter CAN messages

based on message ID.

13. The Target Vehicle
This car hacking project will target the CAN bus of a 2011 Honda Civic LX 4-

door sedan as pictured below in Figure 10:

Figure 10: 2011 Honda Civic LX Sedan

While it is true that this car is already six years old at the time of writing this

paper, the same techniques described herein can be applied to newer cars with similar

results. Due to the federal OBD-II mandate, the vast majority of new vehicles feature a

CAN bus architecture similar to that of the 2011 Honda Civic.

As mentioned earlier, knowing the target vehicle is essential. For this project, a

paid subscription to an online repair data service was utilized to obtain wiring diagrams

and schematics for the target vehicle. It was discovered that the 2011 Honda Civic sedan

utilizes two separate CAN bus backbones: Fast CAN (F-CAN) and Body CAN (B-CAN).

The F-CAN bus deals with the more critical components of the car, such as the engine,

transmission, steering, brakes, and other fundamental vehicle control functions. The

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 22

vehicle’s gauge cluster can also be found on the F-CAN bus, as it relies on data being

sent from some of the most critical components of the vehicle in order to provide

accurate readouts to the driver. The 2011 Civic’s F-CAN bus utilizes a pair of wires

(CAN_H and CAN_L) and operates at 500Kbps. The B-CAN bus, on the other hand,

utilizes only a single wire (SW-CAN) and operates at a much lower 33.33Kbps. The B-

CAN bus handles the less critical functions such as the vehicle’s radio, windows, door

locks, comfort settings, and so on.

Because of the higher criticality and sensitivity of the components found on F-

CAN, this car hacking project will focus on accessing the F-CAN bus to demonstrate just

how vulnerable some of a modern vehicle’s critical components are to unauthorized

access and manipulation.

14. Limitations of CAN Hacking
When attempting to hack the CAN bus, there are numerous technical limitations

that reduce the chances of success. This is particularly true of older vehicles where most

vehicular functions are controlled via analog means. Ironically, it is the newer and more

“advanced” cars that offer the most hacking potential, as they have greater

interconnectivity between the various Electronic Control Units (ECUs) and a wider

overall attack surface.

Even once access to the CAN bus has been established, spoofing CAN messages

may not always yield the desired results. Charlie Miller and Chris Valasek explained this

dilemma in their 2014 paper, Adventures in Automotive Networks and Control Units

(Miller & Valasek, 2014). One of the vehicles Miller and Valasek targeted was a 2010

Ford Escape. The researchers found that although pressing the accelerator pedal created

specific messages on the CAN bus, these messages when replayed over the bus did not

result in acceleration of the vehicle. This is because many CAN messages are intended

only to provide status information to other listening ECUs, but are not actually involved

in the control of the vehicle. But as vehicles become increasingly interconnected, it is

becoming more and more common that critical control functions such as steering,

braking, and acceleration are accessible via the CAN bus.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 23

Miller and Valasek also highlighted another problem with hacking the CAN bus,

which is that “there can be a lack of response or complete disregard for packets sent if

there is contention on the bus” (Miller & Valasek, 2014, p. 29). The CAN bus is already

an inherently busy network, but adding spoofed packets to the mix can often lead to

unexpected results. It is important to remember when sending fake CAN messages that

“the original ECU will still be sending packets on the network as well, [which] may

confuse the recipient ECU with conflicting data” (Miller & Valasek, 2014, p. 29).

Therefore, when performing CAN bus hacking, it is important to be prepared for a

sometimes unpredictable response from the target vehicle.

15. Other Paths to the CAN Bus
Although many modern vehicles are designed without fundamental security

principles in place, not all vehicles lack network segmentation on the CAN bus. Some

vehicles place the OBD-II diagnostic module on a separate CAN bus to the more critical

vehicle control modules. Due to the limitations of the OBD-II port on some vehicles, it

may be necessary to find an alternative entry point to the CAN bus. However, this proved

not to be a significant obstacle on the target vehicle. As with most vehicles, the 2011

Honda Civic has numerous locations where its F-CAN bus is readily accessible.

15.1. Accessing F-CAN
Some further examination of online repair diagrams revealed that one of the

components on the Honda Civic’s F-CAN bus is the Tire Pressure Monitoring System

(TPMS) control module. Because the gauge cluster is on the F-CAN bus, and because the

TPMS control module needs to send data to the gauge cluster (e.g. a low tire warning), it

apparently made sense to the vehicle’s designers to place the TPMS control module on

the F-CAN.

Luckily for hackers and vehicle security researchers, the TPMS control module is

conveniently located just below the steering column and can be easily disconnected. By

disconnecting the TPMS control module, it is possible to hardwire into the TPMS

module’s CAN connector. Figure 11 below shows what this process looks like:

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 24

roderick.h.currie@gmail.com	

Figure 11: Hardwiring into the CAN Bus

The main challenge with hardwiring into the TPMS module connector is knowing

which PINS are used for the CAN signals. Through an examination of online repair data,

it was determined that the TPMS module connector is a 20-pin connector with only 6

active pins. More importantly, the CAN-H signal is found on pin 2 and the CAN-L signal

is found on pin 11. Then, temporary wire was used to access pins 2 and 11 on the TPMS

connector, and alligator clips were used to connect back to the CAN-H and CAN-L pins

(6 and 14 respectively) of the OBD-II to DB9 serial cable. From there, the rest of the

peripherals and methods remain the same as when connecting directly to the OBD-II port.

15.2. Accessing B-CAN
Some additional research yielded a particularly attractive access point to the less

critical B-CAN bus, shown below in Figure 12:

Figure 12: Option Connector Offering Physical Access to B-CAN

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 25

roderick.h.currie@gmail.com	

The highlighted area in Figure 12 shows what the vehicle’s repair literature

describes as an “option connector” located in the fuse box under the dashboard. This so-

called option connector is where an optional feature such as fog lights or navigation

would be plugged in. Because the vehicle does not come with the option in question, the

connector is unused. However, an examination of wiring diagrams reveals that pin 5 of

the option connector carries the B-CAN signal. Because B-CAN runs on a single wire, an

alligator clip to pin 5 is all that is required for direct access to the B-CAN bus.

16. CAN Bus Hacking Method
What follows is a reproducible method for configuring a standard laptop

computer to communicate with the CAN bus of a modern vehicle. These steps are based

on a clean installation of Ubuntu 12.04 LTS on a compatible laptop computer.

16.1. Install Dependencies
There are various utilities that must be installed before installing can-utils. The

first of those is Git. Git is a distributed version control system used to manage software

projects. Git, itself, has some dependencies that must first be downloaded and installed as

shown below:

sudo apt-get install libcurl4-gnutls-dev libexpat1-dev

gettext libz-dev libssl-dev build-essential

Next, use wget to download the latest version of Git:

wget https://www.kernel.org/pub/software/scm/git/git-

2.12.2.tar.gz

Once downloaded, Git can be installed as follows:

tar -zxf git-2.12.2.tar.gz

cd git-2.12.2

make prefix=/usr/local all

sudo make prefix=/usr/local install

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 26

roderick.h.currie@gmail.com	

Before attempting to install can-utils, there are some other build dependencies that

must be installed:

sudo apt-get install autoconf automake pkg-config

libgtk-3-dev autogen libtool

16.2. Install can-utils
With all the necessary dependencies in place, the SocketCAN utilities, also

known as can-utils, can be downloaded and installed:

git clone https://github.com/linux-can/can-utils.git

cd can-utils

./autogen.sh

./configure

make

sudo make install

16.3. Load Modules
Each time the operating system boots, it is necessary to load the required CAN

modules to interface with the CANtact device:

sudo modprobe can

sudo modprobe can_raw

sudo modprobe slcan

It is also possible to set the modules to load automatically each time the O/S

boots. This is advisable to save time later on:

sudo nano /etc/modules

When editing the modules file, each module (can, can_raw, and slcan) should be

added to the file with each on its own line.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 27

16.4. Set CANtact Jumpers
The CANtact interface device has a series of physical hardware jumpers that need

to be set according to the type of connection being used. When utilizing an OBD-II to

DB9 cable, the jumpers must be set to put CAN High on pin 3, CAN Low on pin 5, and

the ground on pin 1. This jumper configuration is shown below in Figure 13:

Figure 13: CANtact Jumper Placement for OBD-II to DB9

16.5. Configure Interface
With all of the necessary software tools in place, it is at this point that the

CANtact device can be physically connected to the laptop’s USB port. When it is

connected, CANtact will appear to the operating system as:

/dev/ttyACM0

The last digit may vary, depending on whether other USB devices are connected

to the system. It is important to note the correct device name for the following step.

Binding the USB to CAN interface is accomplished with the following command:

slcand -o -s6 -t hw -S 3000000 /dev/ttyACM0 slcan0

The above command utilizes slcand, part of the SocketCAN package, which is a

serial CAN device daemon that enables serial to CAN communication. The -o option is

used to open the device for communication. The -t hw option specifies a hardware serial

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 28

roderick.h.currie@gmail.com	

flow. The -S option is used to specify the serial bitrate, in this case 3,000,000 bits per

second or 3Mbps. This can generally be left unchanged. The name of the new interface in

this case is slcan0, or serial CAN device zero. And, finally, the -s6 option is used to

specify the vehicle’s CAN bus bitrate. The -s6 option, specifically, signifies a CAN bus

bitrate of 500Kbps. It is critically important that the correct CAN bus bitrate is selected

for the target bus, otherwise the interface will be unable to communicate with the vehicle.

The bitrate of the CAN bus will vary for different vehicles and different functional CAN

buses. The CAN bus bitrate option should be chosen from the table below in Figure 14:

Option Bitrate

-s0 10Kbps

-s1 20Kbps

-s2 50Kbps

-s3 100Kbps

-s4 125Kbps

-s5 250Kbps

-s6 500Kbps

-s7 800Kbps

-s8 1Mbps

Figure 14: Bitrate Options for slcand

After binding the interface, it is also necessary to bring up the interface before it

can be used. This is performed in the same manner as with an Ethernet interface:

ifconfig slcan0 up

With the link up, ifconfig should generate the following output as shown below in

Figure 15. The new interface is now visible and its link state is reflected here.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 29

roderick.h.currie@gmail.com	

Figure 15: Output from ifconfig Showing slcan0 Interface

The process of binding the interface and bringing up the link can also be

automated to save time in the future (Walter, 2015). This is done by creating a udev rule

to call a custom script:

sudo nano /etc/udev/rules.d/90-slcan.rules

The script should be populated with the following code:

ACTION=="add", ENV{ID_MODEL}=="CANtact_b20",

ENV{SUBSYSTEM}=="tty", RUN+=

"/usr/local/bin/slcan_add.sh $kernel"

The above code is specific to the ID of the CANtact device. If using a different

type of adapter, the ENV{ID_MODEL} will need to be changed accordingly. This code

calls a script named slcan_add.sh, which must first be created as follows:

sudo nano /usr/local/bin/slcan_add.sh

The slcan_add.sh file should be populated with the following content:

#!/bin/sh

slcand -o -s6 -t hw -S 3000000 /dev/$1 slcan0

sleep 2

ifconfig slcan0 up

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 30

roderick.h.currie@gmail.com	

Now, whenever the CAN serial device is connected to the computer, the operating

system will automatically bind the interface at the correct serial bitrate and CAN bitrate,

and will automatically bring the link up. Once a connection to the vehicle has been

established, the reconnaissance phase can begin.

17. Performing CAN Reconnaissance
If all the prerequisite steps have been followed, the interface should be up and

ready to communicate at the correct bitrate for the target vehicle’s CAN bus. Now, the

OBD-II end of the serial cable can be connected to the car’s OBD-II port. To wake the

CAN bus and start seeing CAN traffic, it may be necessary to turn the vehicle’s ignition

to the “ACC” or “ON” position, although it is not necessary to start the vehicle’s engine.

A quick and easy test to see if CAN packets are being successfully received by

the laptop computer is to run candump:

candump slcan0

At this point, a barrage of CAN messages should begin scrolling down the screen.

Although the raw and unfiltered candump output is not very useful, it is nonetheless an

effective way to confirm that the serial CAN interface is working correctly. An example

of typical candump output is shown below in Figure 16:

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 31

roderick.h.currie@gmail.com	

Figure 16: Unfiltered candump Output

Clearly, sending raw candump output to the screen is not a practical way to

observe the CAN bus. A far more useful way to make the CAN output manageable is to

run cansniffer as follows:

cansniffer –c slcan0

As discussed earlier, cansniffer performs real-time filtering of the CAN messages

it receives. Any messages that remain unchanged will be filtered out, thereby making the

output more readable. Cansniffer displays only messages that are changing, and even

goes one step further by highlighting the changing bytes in color when using the -c

option. An example of the output from cansniffer is shown below in Figure 17:

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 32

Figure 17: CAN Bus Output Filtered by cansniffer

Another key advantage of cansniffer is that the output does not scroll. Each

unique CAN ID is given its own line and remains fixed in that position. In the screenshot

above, the specific bytes that are changing in real time are highlighted in red. By

physically manipulating functions of the vehicle and observing the changing CAN bytes,

it is possible to begin mapping out which message IDs and message data correspond to

which specific vehicular functions. For example, shifting the gear lever from P (park) to

R (reverse) causes a change in message ID 188. More specifically, byte 4 of message 188

changes from a value of 01 to a value of 02. Recording and mapping out these specific

pieces of data is crucial to gaining a better overall understanding of how CAN

communication takes place within the target vehicle.

17.1. Reconnaissance Findings
After a considerable amount of time spent experimenting on the 2011 Honda

Civic and recording how the CAN messages changed, a table of vehicular functions and

their corresponding CAN messages was built. Communications were successfully

deciphered relating to the engine RPM, vehicle speed, gas pedal position, gear selection,

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 33

roderick.h.currie@gmail.com	

cruise control, headlights, turn signals, wipers, and more. A complete list of the CAN

functions that were documented is provided in Appendix A at the end of this paper.

18. Replaying CAN Messages
With the CAN messages and their functions mapped out, the next logical step is

to try replaying the messages back to the vehicle to see how the vehicle will respond. It is

possible to send a single CAN message out onto the CAN bus by using the cansend

command. The following example shows a message intended to display an engine RPM

of approximately 8,000 on the tachometer:

cansend slcan0 1DC#023D1713

A more efficient method for sending CAN messages to the vehicle is to utilize

canplayer, another of the utilities found in the SocketCAN package. The canplayer utility

takes a candump log file (.log) and replays it back to the vehicle with the same original

timing as the recording. To utilize canplayer, it is first necessary to generate a candump

log file:

candump –l slcan0

When candump outputs to a log file, its output is different than the output

displayed earlier when running candump without the -l option. The generated log file is

formatted in a way that canplayer can read and interpret. Another very useful feature of

candump is the ability to log only messages with a certain CAN ID. This feature is

utilized heavily later in this paper. For example, logging only messages relating to

vehicle RPM data (message ID 1DC) can be accomplished in the following way:

candump –l slcan0,1DC:7FF

The 7FF in the command above tells candump to also record any extended CAN

frames (EFF) and any remote transmission request (RTR) messages. This way, every

message with the desired CAN ID of 1DC will be recorded in full. The resulting .log file

can then be replayed back to the vehicle with canplayer by utilizing the following syntax:

canplayer –I candump-2017-04-05-183520.log

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 34

When using canplayer to play back a candump log file, canplayer will

automatically use the same CAN interface from which the candump file was recorded.

The interface is defined in the log file.

19. Customizing CAN Playback Files
Crafting customized CAN messages by hand is relatively easy. For example, the

cansend utility allows custom CAN messages to be manually typed into the console and

sent out over the CAN bus. However, sending individual messages in this manner is

unlikely to allow for much control over the vehicle. This is because when a CAN

message is received and processed, its effects usually only last for 10 to 20 milliseconds

before another CAN message is received and processed by the listening controller.

Therefore, when attempting to control certain vehicular functions, a continuous stream of

well-timed CAN messages is required.

One way to continuously stream CAN messages to the vehicle is by utilizing a

scripting language such as Python. With this method, a loop can be created to execute a

cansend command at a specified interval, such as every 20ms. An alternative way to send

a steady stream of CAN messages is to build a custom .log file to be played back to the

vehicle using canplayer. The .log file must be in the following format:

(1492287144.880000) slcan0 1DC#023D1713
(1492287144.900000) slcan0 1DC#023D1713
(1492287144.920000) slcan0 1DC#023D1713
(1492287144.940000) slcan0 1DC#023D1713
(1492287144.960000) slcan0 1DC#023D1713
(1492287144.980000) slcan0 1DC#023D1713
(1492287145.000000) slcan0 1DC#023D1713

Figure 18: Excerpt From a CAN .log File

The first column of the .log file represents the current date and time in what is

known as “epoch time” (EpochConverter, 2017). This is the number of seconds that have

elapsed since midnight GMT on January 1st, 1970. When working with .log files in

canplayer, the time itself is not important; what is important is the time increment from

one line to the next. When playing back a .log file, canplayer plays the first line

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 35

immediately and then waits the amount of the incremental time difference before playing

the next line. In the example shown above in Figure 18, each line is played at an interval

of 0.02 seconds, or 20 milliseconds.

The second column of a CAN .log file represents the interface over which the

CAN message should be sent. For the example in Figure 18, this is set to slcan0 and

should not be modified. Finally, the third column of the .log file is the CAN message.

The first three digits of the CAN message represent the message ID. The “#” symbol is

necessary to separate the message ID from the message body. The characters that follow

the “#” symbol represent the hexadecimal CAN message data.

The message in the example in Figure 18 tells the tachometer to display a reading

of 2,000 RPM. Because the message is repeated seven times at an interval of 20ms, its

effect would be expected to last 140ms, or just a fraction of a second. Therefore, if a

canplayer .log file is to have any significant impact on the target vehicle then it must

usually be hundreds – or even thousands – of lines in length.

 For the purposes of this research, one of the most efficient ways to create lengthy

custom CAN .log files was to utilize Microsoft Excel and its built-in formula

functionality. An example of the formula used to generate the timestamps in Figure 18 is

shown below in Figure 19:

Figure 19: Excel Formula for CAN Timestamps

In the above example, the increment of 0.02 seconds could easily be changed to

0.01 for 10ms, or 0.005 for 5ms, and so on. The correct formula only needs to be entered

on a single line, then Excel’s built-in click-and-drag functionality allows the formula to

be easily extended across hundreds or thousands of consecutive rows. This method of

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 36

.log file creation is less time-consuming than using a programming language to script the

creation of CAN playback files.

Once the timestamps are worked out, all that remains is to copy and paste the

interface and message data across all rows of the file. In Excel, the playback file should

be saved as a tab-delimited text file (.txt) and then renamed with a .log extension for

playback by the canplayer utility. Knowing the specific message data to use for an

intended task can be a process of trial and error, but observing and documenting patterns

in known good data is an advisable starting point.

20. Manipulation of the Target Vehicle
The ultimate goal of this project was not only to decipher and document CAN

message functions, but also to exert some degree of control over the target vehicle. As it

turned out, this could be accomplished with relative ease. What follows is a breakdown of

the different ways in which the vehicle was successfully manipulated.

When sending CAN messages to the target vehicle, any physical access point on

the appropriate CAN bus can be used. When communicating with this vehicle’s F-CAN,

the results were the same regardless of whether connecting via the OBD-II port or

tapping into the vehicle’s TPMS module connector. This only serves to highlight the lack

of secure network segmentation found in today’s vehicles.

In each case below, a reverse-engineered CAN log file (.log) was created and

played back to the vehicle utilizing canplayer with the following syntax:

canplayer –v –I filename.log

When running canplayer, the -v option (verbose) displays each line of the .log file

on the screen in real time, as it is being played back. The -I option is used to specify the

filename of the input file.

In each case, the CAN .log file can either be played back to the vehicle while the

engine is running or while the engine is off (as long as the ignition is in the ON position).

Regardless of whether the vehicle is parked or is in motion, it is still possible to take

control of the CAN bus.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 37

roderick.h.currie@gmail.com	

21. Manipulating Engine RPM Data
The target vehicle, a 2011 Honda Civic, features a traditional tachometer gauge

with a needle to represent engine RPM. Listening to CAN traffic and deciphering

message functions revealed that the engine RPM data being displayed on the tachometer

comes from CAN messages with an ID of 1DC. Under normal conditions, the engine’s

Powertrain Control Module (PCM) broadcasts a 1DC message on the CAN bus every 20

milliseconds, or 50 times per second. The gauge cluster’s control unit constantly listens

on the CAN bus for messages with this identifier. Every time a message with an ID of

1DC is received, the needle position on the tachometer is updated accordingly.

The following is what a typical RPM CAN message looks like:

1DC#0212B824

On the target vehicle, and on many other Honda vehicles, the CAN message ID of

1DC is used exclusively to broadcast engine RPM data on the CAN bus. In this case, the

1DC message is 4 bytes in length. Throughout this research, it was found that the first

byte never changed from a value of 02. The remaining three bytes, however, are a

hexadecimal representation of the actual engine RPM after being encoded using a basic

algorithm. After some experimentation, it was found that the following method depicted

in Figure 20 can be used to derive the approximate human-readable engine RPM from

the hexadecimal data:

Divide
by 500

Convert
to Decimal

Engine
RPM

1DC Hex
Data

(Last 3 Bytes)

Figure 20: Converting 1DC CAN Data to Human-Readable Engine RPM

For example, a 1DC message with the last three bytes of 12B824 converts to a

decimal value of 1,226,788. This number divided by 500 yields a result of 2453.576, or

approximately 2,450 RPM. In testing, when a CAN message of 1DC#12B824 was played

back to the vehicle continuously, the tachometer needle would consistently move to a

position of approximately 2,450 RPM, thereby validating the above algorithm.

Reverse engineering CAN RPM messages can be accomplished by picking a

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 38

roderick.h.currie@gmail.com	

desired RPM and running it through the above algorithm in reverse. Interestingly, it was

found that the vehicle would only process a CAN RPM message if the corresponding

decimal value ended in either 03 or 53; all other messages were dropped without being

processed. This is presumably a measure to promote fault-tolerance. The table shown

below in Figure 21 lists CAN messages for RPM values ranging from 1,000 through

8,000:

1DC Message Last 3 Bytes Decimal Divide by 500 Approx. RPM
0207B1EF 07B1EF 504303 1008.606 1,000
020F3C03 0F3C03 998403 1996.806 2,000
021754DD 1754DD 1529053 3058.106 3,000
021EF503 1EF503 2028803 4057.606 4,000
022630F7 2630F7 2502903 5005.806 5,000
022E5331 2E5331 3035953 6071.906 6,000
0235DD45 35DD45 3530053 7060.106 7,000
023D1713 3D1713 4003603 8007.206 8,000

Figure 21: 1DC CAN Messages and Their Corresponding Engine RPM Values

Using the values shown in the table above, a custom .log file was created which,

when played back to the vehicle, yielded full control of the tachometer. The final RPM

.log file created for this project contained 600 individual CAN messages and resulted in

12 seconds of uninterrupted control of the tachometer. It is possible to create even longer

files or to use a scripting language such as Python to establish indefinite control of CAN

bus controllers. However, a 12-second demonstration is sufficient to show successful

manipulation of the vehicle.

A short excerpt from the CAN .log file is provided below in Figure 22, showing

the overall technique of repeating 1DC RPM messages every 20 milliseconds and varying

the data bytes to display different RPM values:

(1492287146.060000)	 slcan0	 1DC#023D1713	
(1492287146.080000)	 slcan0	 1DC#023D1713	
(1492287146.100000)	 slcan0	 1DC#023D1713	
(1492287146.120000)	 slcan0	 1DC#023D1713	
(1492287146.140000)	 slcan0	 1DC#023D1713	
(1492287146.160000)	 slcan0	 1DC#023D1713	
(1492287146.180000)	 slcan0	 1DC#023D1713	
(1492287146.200000)	 slcan0	 1DC#023D1713	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 39

roderick.h.currie@gmail.com	

(1492287146.220000)	 slcan0	 1DC#022E5331	
(1492287146.240000)	 slcan0	 1DC#022E5331	
(1492287146.260000)	 slcan0	 1DC#022E5331	
(1492287146.280000)	 slcan0	 1DC#022E5331	
(1492287146.300000)	 slcan0	 1DC#022E5331	
(1492287146.320000)	 slcan0	 1DC#022E5331	
(1492287146.340000)	 slcan0	 1DC#022E5331	
(1492287146.360000)	 slcan0	 1DC#022E5331	
(1492287146.380000)	 slcan0	 1DC#022E5331	
(1492287146.400000)	 slcan0	 1DC#022E5331	

Figure 22: Excerpt From Tachometer Attack .log File

Although it is not possible to capture the moving tachometer needle in a static

image, the photograph provided below in Figure 23 shows the needle positioned at 8,000

RPM – something that would be impossible under normal conditions due to the vehicle’s

built-in rev-limiter:

Figure 23: Successful Attack on Tachometer

Additionally, a video of the tachometer attack from this project is available online

at the following URL: https://www.youtube.com/watch?v=euRyJCgfRGo

22. Manipulating Vehicle Speed Data
The technique used to manipulate the vehicle’s speedometer is similar to that used

to manipulate the tachometer. However, vehicle speed data uses a different CAN message

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 40

roderick.h.currie@gmail.com	

ID and a more complex message structure. Through a process of elimination, it was

found that the message ID for speedometer data for the target vehicle is 158. A normal

158 CAN message is shown below:

158#03BE03D803C7022C

Unlike the 1DC messages for RPM, which have a length of 4 bytes, a normal 158

CAN message has a length of 8 bytes. Also, whereas 1DC RPM message are broadcast

every 20ms, 158 messages are broadcast every 10ms, or 100 times per second. After a

considerable amount of road testing and experimentation, it was determined that a 158

CAN message can be divided into five distinct parts as follows:

Bytes 1 & 2: Speed data for purposes other than speedometer.
Bytes 3 & 4: Engine RPM data for purposes other than tachometer.

Bytes 5 & 6: Speed data for display on speedometer.
Byte 7: Signal to increment odometer.

Byte 8: Signal to indicate vehicle is in motion.

Much of the reverse engineering of CAN 158 messages was performed using

Microsoft Excel and its built-in formula and graphing functions. An effective way to

view and interpret a stream of 158 messages is to break them down into their different

functional parts. Excel formulas allow the different segments of the message to be easily

broken out and modified independently of each other. Figure 24 below shows a small

excerpt from a 158 candump .log file after it has been dissected in Excel:

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC
CAN	Message B1	&	B2 B1	&	B2 B3	&	B4 B3	&	B4 B5	&	B6 B5	&	B6 B7 B7 B8 B8

158#060C0633061A0236 060C 1548 0633 1587 061A 1562 02 2 36 54
158#06100636061D020E 0610 1552 0636 1590 061D 1565 02 2 0E 14
158#0614063906210211 0614 1556 0639 1593 0621 1569 02 2 11 17
158#061C063F062A0229 061C 1564 063F 1599 062A 1578 02 2 29 41
158#061F0644062D023C 061F 1567 0644 1604 062D 1581 02 2 3C 60
158#061E0647062C020E 061E 1566 0647 1607 062C 1580 02 2 0E 14
158#06220648062F0313 0622 1570 0648 1608 062F 1583 03 3 13 19
158#0628064E0636032E 0628 1576 064E 1614 0636 1590 03 3 2E 46
158#062C065206390331 062C 1580 0652 1618 0639 1593 03 3 31 49
158#062C0653063A0302 062C 1580 0653 1619 063A 1594 03 3 02 2

Figure 24: Breaking Down the 158 Message Structure

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 41

An even better way to fully understand and analyze just what the 158 CAN

message does is to visually depict its various byte pairs using a line graph as shown

below in Figure 25. This allows for pattern analysis, which is an essential method for

learning how the target vehicle communicates.

Figure 25: Charting the Different Parts of a CAN 158 Message

The line graph above in Figure 25 was created using an approximately 7-second

excerpt of CAN messages with ID 158 recorded from a longer session of normal driving

behavior. The “epoch” timestamps have been removed for simplicity and replaced with a

timestamp showing the number of seconds that have elapsed since the recording began.

The graph immediately offers up evidence regarding what is happening within the

different byte pair segments of a CAN 158 message. As indicated by the blue and yellow

lines, byte pairs 1 & 2 and 5 & 6 both report the speed of the vehicle and mirror each

other very closely. The green line of bytes 3 & 4 represents engine RPM data that is not

used by the tachometer and is entirely separate from the 1DC RPM messages discussed

earlier in the paper. As the graph above shows, the amount of work being performed by

the engine was directly commensurate with the vehicle’s speed until shortly after the 23-

second mark. The green line’s sharp drop-off represents a gear change; the engine RPM

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 42

decreased significantly, but then continued to climb again as the car accelerated. The

engine RPM and vehicle speed lines then continued to roughly parallel each other

throughout the experiment when driving on a level surface.

Bytes 7 of a 158 CAN message is used exclusively by the odometer and will be

covered in greater detail later. Byte 8, however, has some relevance to vehicle speed data

and is worth explaining at this time. The data being transmitted in byte 8 may initially

seem quite perplexing. While speedometer data is clearly contained in bytes 5 & 6, it is

not possible to manipulate the speedometer without byte 8 also being present. Similarly,

although it was determined that byte 7 is used for the odometer signal, the odometer will

not update unless byte 8 also contains data. Analysis of 158 CAN packets during normal

driving reveals that the byte 8 data has no direct correlation to the vehicle’s speed or

engine RPM. The byte 8 data appears to fluctuate regardless of how the vehicle is being

driven, so reaching a logical conclusion about the purpose of byte 8 was not easy.

It can be concluded that the true purpose of byte 8 is essentially to let the

vehicle’s ECUs know that the vehicle is in motion. Rather than containing direct

numerical data, the messages contained in CAN 158 byte 8 are actually more of a “pulse”

type signal. And this pulse signal varies depending on the state of the vehicle. This is best

illustrated in the graphs below in Figure 26:

Figure 26: 158 Byte 8 “Pulse” Signal: Stationary (L) vs. Moving (R)

The two graphs above represent two separate samplings of byte 8 data each

created from 30 consecutive CAN 158 messages. The left set of data was recorded when

the vehicle was parked, whereas the right data set was recorded while the vehicle was

being driven.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 43

As can be seen from the left graph, the 158 byte 8 signal is uniform when the

vehicle is not in motion. The signal repeatedly peaks at a decimal value of 61, before

dropping down to a value of 0. This occurs consistently regardless of whether the engine

is running or not, and regardless of whether the vehicle is in gear. When the vehicle is

being driven, however, the byte 8 signal immediately becomes a lot more erratic. More

crucially, the signal never reaches the high value of 61 or the low value of 0 associated

with the stationary signal. It is this slightly narrower signal range that tells the vehicle it

is in motion, thereby prompting the gauge cluster to process speedometer messages

(bytes 5 & 6) and odometer messages (byte 7). When the byte 8 signal tells the car it is

stationary or if the byte 8 signal simply is not present, then bytes 5, 6 and 7 are all

ignored by the listening ECUs.

Focusing in on the speed data of bytes 5 & 6, after some experimentation, the

algorithm shown below in Figure 27 was established for deriving the vehicle speed in

miles per hour (mph) from the original CAN hexadecimal values:

Divide
by 100

Convert
to Decimal

Vehicle
Speed
(mph)

158 Hex Data
(Bytes 5 & 6)

Multiply by
0.62137119

Figure 27: Converting 158 CAN Data to Vehicle Speed in Miles per Hour

On the target vehicle, and on most vehicles, the ECUs process vehicle speed data

in kilometers per hour (km/h). The fact that the gauge cluster displays speed in miles per

hour (mph) is merely a display setting. Therefore, it is necessary to multiply the decimal

km/h data by 0.62137119, as 1 kilometer is equal to 0.62137119 miles. It is also

necessary to divide the resulting value by 100 to position the decimal point correctly.

For example, a hexadecimal speed value of 2659 can be converted to 9817 in

decimal. When 9817 is multiplied by 0.62137119, the result is 6100.00097223. When

this number is divided by 100, the result is 61.0000097223, or a speed of 61 mph. The

table below in Figure 28 lists the CAN 158 byte 5 & 6 data associated with various other

vehicle speeds:

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 44

roderick.h.currie@gmail.com	

158 Bytes 5 & 6 Decimal Multiply by 0.62137119 Divide by 100 Approx. Speed
064A 1610 1000.40761590 10.00407616 10mph
12DD 4829 3000.60147651 30.00601477 30mph
1F6F 8047 5000.17396593 50.00173966 50mph
324B 12875 8000.15407125 80.00154071 80mph
4B71 19313 12000.54179247 120.00541792 120mph
6E04 28164 17500.29819516 175.00298195 175mph
7DBB 32187 20000.07449253 200.00074493 200mph

Figure 28: 158 CAN Messages and Their Corresponding Vehicle Speed Values

The method used to demonstrate continuous manipulation of the vehicle’s

speedometer was similar to that used earlier for the tachometer. A custom .log file was

created and canplayer was used to play it back to the vehicle, overriding the vehicle’s true

speed data and replacing it with spoofed data. This attack proved possible regardless of

whether the vehicle was in motion or not. The same attack could also be accomplished

programmatically, by running a custom script against the vehicle rather than using a

saved CAN .log file. It is not practical or realistic, however, to manipulate the

speedometer in real time using keystrokes alone. This is because spoofed speed messages

must be sent repeatedly at intervals of 10 milliseconds, otherwise the speedometer will

default back to displaying the true speed being reported by the vehicle’s PCM.

It was found that the target vehicle’s speedometer readout could be manipulated

for up to several minutes at a time. The simplest form of speedometer attack would be to

simply craft one CAN 158 message for the desired speed and send that same message to

the vehicle repeatedly at 10-millisecond intervals. However, the requisite “pulse” signal

of the 158 message byte 8 adds an element of complexity. In order for the Gauge Control

Module (GCM) to process and display the spoofed speed message, it first has to be

convinced that the vehicle is actually moving. This was accomplished by copying the

legitimate byte 8 signal recorded during an actual driving session, overlaid with the

spoofed speed data of bytes 5 & 6. An excerpt from the final speedometer manipulation

.log file is shown below in Figure 29:

(1492993910.700000)	 slcan0	 158#0000000076300031	
(1492993910.710000)	 slcan0	 158#0000000076300009	
(1492993910.720000)	 slcan0	 158#000000007630001B	
(1492993910.730000)	 slcan0	 158#0000000076300020	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 45

roderick.h.currie@gmail.com	

(1492993910.740000)	 slcan0	 158#000000007630003C	
(1492993910.750000)	 slcan0	 158#000000007630000F	
(1492993910.760000)	 slcan0	 158#000000007630001E	
(1492993910.770000)	 slcan0	 158#000000007630002B	
(1492993910.780000)	 slcan0	 158#0000000076300032	
(1492993910.790000)	 slcan0	 158#0000000076300005	
(1492993910.800000)	 slcan0	 158#0000000076300016	
(1492993910.810000)	 slcan0	 158#0000000076300023	
(1492993910.820000)	 slcan0	 158#0000000076300038	

Figure 29: Excerpt from Speedometer Attack .log File

In the .log file excerpt shown above, bytes 1 through 4 have been set to zero

because they are not required for manipulation of the speedometer. Bytes 5 & 6 contain

the hexadecimal value 7630, which equates to a speed of 188 mph. Byte 7 has also been

set to zero as it is not required for this exercise. Finally, the changing data in the byte 8

position represents the in-motion “pulse” signal.

The photograph shown below in Figure 30 shows an uncommon sight – a reading

of 188 mph being displayed on the speedometer while the vehicle itself is stationary. This

represents a successful attack against the target vehicle’s speedometer. This also points to

a worrisome lack of checks and balances on the CAN bus, allowing a would-be attacker

to create a condition which falls outside of “normal” operating parameters without any

intervention from the vehicle.

Figure 30: Successful Attack on Speedometer

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 46

A video of the speedometer attack from this project is also available online at the

following URL: https://www.youtube.com/watch?v=QlpTx_LsW7M

23. Manipulating Odometer Data
The odometer displays the number of miles a vehicle has traveled in its lifetime. It

should be noted that modifying a vehicle’s odometer is illegal in the United States under

Title 49, U.S. Code Chapter 327, which prohibits the “disconnection, resetting, or

alteration of a motor vehicle's odometer with intent to change the number of miles

indicated thereon” (NHTSA, 2017). Nonetheless, in the interest of security research, what

follows is a method for manipulating the odometer through reverse engineering of CAN

bus messages.

The way in which the odometer value is managed by the vehicle varies from one

manufacturer to the next. On some vehicles, the actual odometer value in miles or

kilometers is broadcast constantly on the CAN bus. Vehicles using this method are most

susceptible to real-time odometer spoofing. However, the 2011 Honda Civic actually

stores the odometer value within the gauge cluster itself. This is evidenced by cases in

which the gauge cluster is replaced and an entirely different odometer reading is inherited

by the vehicle. Therefore, on the 2011 Honda Civic, the odometer value in miles or

kilometers is not transmitted over the CAN bus. Instead, the PCM transmits a periodic

CAN signal to the Gauge Control Module to increment the odometer. The frequency of

the “increment” command depends upon the traveling speed of the vehicle. The GCM

listens for this signal and increments the odometer each time an “increment” command is

received. This means it is still possible for an attacker to manipulate the odometer to

some degree through reverse engineering of CAN messages.

As noted earlier, the odometer signal can be found in CAN message ID 158, the

same message type responsible for speed and other engine data:

158#03BE03D803C7022C

More specifically, byte 7 is used for the signal to tell the odometer to periodically

increment depending upon how fast the vehicle is traveling. When the vehicle is first

turned on, CAN message 158 will have a value of 00 in the byte 7 position. As the

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 47

vehicle begins to move, byte 7 will change to 01, then to 02, and so on. Each time the

Gauge Control Module sees an increment of the byte 7 value, it, in turn, increments the

stored odometer value. The actual numeric value of byte 7 is insignificant – it is only the

timing of the increments that the Gauge Control Module cares about. Also, the fact that

one byte of data can only cycle through 256 possible values is of little consequence;

when byte 7 reaches a decimal value of 255, its next increment returns it to a value of

zero and the incrementation cycle continues. The graph shown below in Figure 31

overlays the byte 7 odometer signal on top of vehicle speed data from bytes 5 & 6:

Figure 31: Relationship of Vehicle Speed and Odometer Incrementation

The graph above was created using data recorded while accelerating the vehicle

from a stop to a speed of approximately 60 mph. What is immediately apparent from the

graph is that as the traveling speed of the vehicle increases, so too does the frequency of

odometer incrementation. When the vehicle is traveling at a low speed, the “steps” of the

odometer line appear more spread out. As the vehicle travels faster, the time between

each odometer increment lessens.

It became apparent that the key to manipulating the odometer is to duplicate the

odometer incrementation signal. And, in theory, doing so with a minimal length of time

between increments should cause the odometer readout to increase more rapidly. Using

lessons learned in the speedometer manipulation exercise, it was also found that the byte

8 vehicle-in-motion “pulse” signal had to be present to get any kind of response from the

odometer.

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 48

As with the tachometer and speedometer hacks, the easiest way to manipulate the

vehicle’s odometer is to play back a custom .log file using canplayer. This is because the

Gauge Control Module expects to receive a CAN 158 message from the Powertrain

Control Module once every 10 milliseconds, without fail. An excerpt from the .log file

used to manipulate the odometer is shown below in Figure 32:

(1492993910.840000)	 slcan0	 158#0000000000003508	
(1492993910.850000)	 slcan0	 158#000000000000351E	
(1492993910.860000)	 slcan0	 158#000000000000352C	
(1492993910.870000)	 slcan0	 158#000000000000353C	
(1492993910.880000)	 slcan0	 158#0000000000003506	
(1492993910.890000)	 slcan0	 158#0000000000003511	
(1492993910.900000)	 slcan0	 158#0000000000003624	
(1492993910.910000)	 slcan0	 158#0000000000003636	
(1492993910.920000)	 slcan0	 158#000000000000360D	
(1492993910.930000)	 slcan0	 158#0000000000003614	
(1492993910.940000)	 slcan0	 158#0000000000003627	
(1492993910.950000)	 slcan0	 158#000000000000363B	
(1492993910.960000)	 slcan0	 158#0000000000003601	
(1492993910.970000)	 slcan0	 158#0000000000003615	
(1492993910.980000)	 slcan0	 158#000000000000372B	
(1492993910.990000)	 slcan0	 158#000000000000373B	

Figure 32: Excerpt from Odometer Attack .log File

As can be seen from the excerpt above, only bytes 7 and 8 of the 158 message are

needed to increase the vehicle’s odometer value. Byte 8, highlighted in purple, is the

“pulse” signal tricking the vehicle into thinking it is in motion. Byte 7, highlighted in red,

is the byte that actually increments the odometer. In order to achieve a rapid

incrementation of the odometer, it was determined that the optimal span between each

increment of the byte 7 value was 8 messages, or a time interval of 80ms. When the byte

7 value was incremented more frequently than once every 80ms, some of the increment

requests were actually ignored and the odometer readout would increment at a much

slower rate.

When the above .log file was played back to the vehicle continuously for a period

of 2 minutes, the odometer increased by a total of 5.7 miles. Under normal circumstances,

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 49

such a rapid rate of odometer increase would require the vehicle to be traveling at a speed

of approximately 171 miles per hour.

Modification of the odometer is not something that can be captured in a

photograph. However, a video of the odometer attack from this project is available online

at the following URL: https://www.youtube.com/watch?v=YhKfDh1-KP4

24. Implications
The specific attacks demonstrated in this paper may seem insignificant, as they do

not directly impact the safety or control of the vehicle. However, the intent of this project

was to demonstrate the relative ease with which an unauthorized device can join the CAN

bus and manipulate the vehicle. Controlling the data being displayed on the vehicle’s

gauge cluster is an effective way to demonstrate manipulation of the CAN bus, as it

provides a clear, visual indicator of a successful attack. This is similar to the way a

hacker might breach a web server and deface a website as evidence of their exploits.

What is particularly alarming about this research is that the same network bus that

was exploited to manipulate the gauge cluster also hosts communications for the engine,

transmission, brakes, and steering. On a newer, more connected vehicle with a greater

amount of computerization, the same techniques demonstrated in this paper could be used

to take full control of the vehicle and create a dangerous, potentially deadly situation.

25. Conclusion
By successfully demonstrating multiple ways in which the CAN bus can be

manipulated using basic computer hardware, this project has highlighted just how

woefully insecure the CAN architecture is. Unfortunately, without a revision of the

federal law mandating the OBD-II standard, the outdated CAN bus is not going away

anytime soon. The Controller Area Network will remain at the core of modern vehicles

for years to come.

Today, with the auto industry on the cusp of fully-autonomous vehicle technology

and greater interconnectivity than ever before, auto manufacturers simply cannot ignore

the inherent vulnerabilities of the CAN bus. The problem of securing automotive systems

roderick.h.currie@gmail.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 50

roderick.h.currie@gmail.com	

is massively complex, but the responsibility lies with the automakers to face the

challenge head-on and take proactive steps to secure their products. In the meantime, the

best way to provoke the automakers to action is to increase public awareness of the

underlying problem so that it can no longer be ignored. It is my hope, therefore, that the

research presented in this paper will inspire other security researchers to undertake car

hacking projects of their own for the betterment of the automobile industry overall.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 51

roderick.h.currie@gmail.com	

Appendix A
List of CAN Messages and Functions for 2011 Honda Civic LX

CAN
ID

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8 Vehicle Function

13A XX - - - - - - - Engine	Idle	Compensation	
13A - XX - - - - - - Gas	Pedal	Position	
158 XX XX - - - - - - Speed	Data,	Not	for	Speedometer	
158 - - XX XX - - - - Engine	RPM,	Not	for	Tachometer	
158 - - - - XX XX - - Speed	Data	for	Speedometer	
158 - - - - - - XX - Odometer	Incrementation	
158 - - - - - - - XX Vehicle	in	Motion	
164 00 - - - - - - - Headlights:	Off	
164 04 - - - - - - - Headlights:	DRLs	
164 05 - - - - - - - Headlights:	Parking	Lights	
164 06 - - - - - - - Headlights:	Low	Beams	
164 07 - - - - - - - Headlights:	High	Beams	
164 - - 00 - - - - - A/C:	Off	(Engine	Running)	
164 - - 40 - - - - - A/C:	On	(Engine	Running)	
164 - - 80 - - - - - A/C:	Off	(Engine	Off)	
164 - - C0 - - - - - A/C:	On	(Engine	Off)	
17C - - XX XX - - - - Engine	RPM,	Not	for	Tachometer	
17C - - - - XX - XX - Brake	Pedal	Depressed	
1DC 02 XX XX XX Engine	RPM	for	Tachometer	
188 - - - 01 - - Current	Gear:	Park	
188 - - - 02 - - Current	Gear:	Reverse	
188 - - - 04 - - Current	Gear:	Neutral	
188 - - - 08 - - Current	Gear:	Drive	
188 - - - 20 - - Current	Gear:	3rd	
188 - - - 40 - - Current	Gear:	2nd	
188 - - - 80 - - Current	Gear:	1st	
164 0X - - - - - - - Cruise	Control:	Off	
164 2X - - - - - - - Cruise	Control:	On	
164 AX - - - - - - - Cruise	Control:	Accelerate	
164 6X - - - - - - - Cruise	Control:	Decelerate	
164 EX - - - - - - - Cruise	Control:	Cancel	
164 X4 - - - - - - - Handbrake:	On	
164 X0 - - - - - - - Handbrake:	Off	
294 04 - - - - - - - Turn	Signals:	Off	
294 24 - - - - - - - Turn	Signals:	Left	
294 44 - - - - - - - Turn	Signals:	Right	
294 04 - - - - - - - Wipers:	Off	
294 0C - - - - - - - Wipers:	Intermittent	
294 14 - - - - - - - Wipers:	Low	
294 1C - - - - - - - Wipers:	High	
305 80 - Driver’s	Seatbelt:	Unfastened	
305 00 - Driver’s	Seatbelt:	Fastened	
324 XX XX XX XX XX XX XX XX Engine	Run	Time	Clock	
40C XX XX XX XX XX XX XX XX Vehicle	Identification	Number	(VIN)	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 52

roderick.h.currie@gmail.com	

References

ALLDATA. (2017). ALLDATA – OEM Repair Information for Professionals. Retrieved

March 31, 2017, from http://www.alldata.com/

Amazon. (2015). AmazonBasics USB 2.0 Cable - A-Male to B-Male - 6 Feet (1.8

Meters). Retrieved March 30, 2017, from https://www.amazon.com/gp/product/

B00NH11KIK/

B&B Electronics. (2011). Does My Car Have OBD-II? Retrieved March 25, 2017, from

http://www.obdii.com/connector.html

Canonical. (2011). Ubuntu on Lenovo Thinkpad T420s. Retrieved March 30, 2017, from

https://certification.ubuntu.com/hardware/201102-7326/

CERN. (2013). The Birth of the Web. Retrieved May 3, 2017, from https://home.cern/

topics/birth-web

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S. et al.

(2011). Comprehensive Experimental Analyses of Automotive Attack Surfaces.

Retrieved March 25, 2017, from http://www.autosec.org/pubs/carsusenixsec

2011.pdf

Currie, R. (2015). Developments in Car Hacking. Retrieved March 17, 2017, from https://

www.sans.org/reading-room/whitepapers/ICS/developments-car-hacking-36607

Currie, R. (2016). The Automotive Top 5: Applying the Critical Controls to the Modern

Automobile. Retrieved March 17, 2017, from https://www.sans.org/reading-

room/whitepapers/critical/automotive-top-5-applying-critical-controls-modern-

automobile-36862

EpochConverter. (2017). Epoch & Unix Timestamp Conversion Tools. Retrieved April

25, 2017, from https://www.epochconverter.com/

Evenchick, E. (2015). CANtact: The Open Source Car Tool. Retrieved March 30, 2017,

from http://linklayer.github.io/cantact/

Gallagher, S. (2015). Researchers reveal electronic car lock hack after 2-year injunction

by Volkswagen. Retrieved March 23, 2017, from https://arstechnica.com/security/

2015/08/researchers-reveal-electronic-car-lock-hack-after-2-year-injunction-by-

volkswagen/

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 53

roderick.h.currie@gmail.com	

Golson, J. (2016). Car hackers demonstrate wireless attack on Tesla Model S. Retrieved

February 10, 2017, from http://www.theverge.com/2016/9/19/12985120/tesla-

model-s-hack-vulnerability-keen-labs

Greenberg, A. (2015). After Jeep Hack, Chrysler Recalls 1.4M Vehicles for Bug Fix.

Retrieved May 1, 2017, from https://www.wired.com/2015/07/jeep-hack-chrysler-

recalls-1-4m-vehicles-bug-fix/

Greenberg, A. (2016). It’s Finally Legal To Hack Your Own Devices (Even Your Car).

Retrieved March 24, 2017, from https://www.wired.com/2016/10/hacking-car-

pacemaker-toaster-just-became-legal/

Greenberg, A. (2017). Securing Driverless Cars From Hackers is Hard. Ask the Ex-Uber

Guy Who Protects Them. Retrieved May 3, 2017, from https://www.wired.com/

2017/04/ubers-former-top-hacker-securing-autonomous-cars-really-hard-problem/

Hartkopp, O., & Thürmann, U. (2006). Low Level CAN Framework. Retrieved March 30,

2017, from https://www.brownhat.org/docs/socketcan/llcf-api.html

Kernel.org. (2016). Readme File for the Controller Area Network Protocol Family (aka

SocketCAN). Retrieved March 30, 2017, from https://www.kernel.org/doc/

Documentation/networking/can.txt

Kleine-Budde, M. (2012). SocketCAN - The official CAN API of the Linux kernel.

Retrieved March 31, 2017, from https://www.can-cia.org/fileadmin/resources/

documents/proceedings/2012_kleine-budde.pdf

Kvaser. (2014). Kvaser's CanKing - Free Bus Monitor Software. Retrieved March 30,

2017, from http://www.kvaser.com/canking/

Lenovo. (2015). Detailed specifications - ThinkPad T420. Retrieved March 30, 2017,

from https://support.lenovo.com/us/en/solutions/pd015734

Linklayer. (2016). SocketCAN. Retrieved March 31, 2017, from https://wiki.linklayer.

com/index.php/SocketCAN

Lyons, A. (2015). On-Board Diagnostics (OBD) Program Overview. Retrieved March

29, 2017, from http://www.theicct.org/sites/default/files/6_ARB_OBD.pdf

Miller, C., & Valasek, C. (2014). Adventures in Automotive Networks and Control Units.

Retrieved March 16, 2017, from http://www.ioactive.com/pdfs/IOActive_

Adventures_in_Automotive_Networks_and_Control_Units.pdf

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 54

roderick.h.currie@gmail.com	

Miller, C., & Valasek, C. (2015). Remote Exploitation of an Unaltered Passenger

Vehicle. Retrieved March 16, 2017, from http://illmatics.com/Remote%20Car

%20Hacking.pdf

Mitchell1. (2017). Automotive Repair Software and Repair Shop Solutions | Mitchell1.

Retrieved March 31, 2017, from http://mitchell1.com/

Nakade M. J., Shrivastava K. N., Dhumal S. B., Wakle R. P. (2015). Communication

over Automobile Instrument Assembly using CAN Bus –A Review. Retrieved

March 29, 2017, from http://www.ijmter.com/published_special_issues/07-02-

2015/communication-over-automobile-instrument-assembly-using-can-bus-a-

review.pdf

Netronics. (2015). CANdo Application. Retrieved March 30, 2017, from http://www.

cananalyser.co.uk/candoapp.html

Nissanhelp. (2011). OBDII Data Link Connector (DLC) Location. Retrieved March 29,

2017, from http://nissanhelp.com/diy/titan/projects/nissan_titan_obd_connector_

location.php

NHTSA. (2017). Odometer Information Overview for Consumers. Retrieved May 4,

2017, from https://one.nhtsa.gov/Vehicle-Safety/Odometer-Fraud/Odometer-

Information-Overview-for-Consumers

O’Carroll, L. (2013). Car hacking scientists agree to delay paper that could unlock

Porsches. Retrieved March 23, 2017, from https://www.theguardian.com/

technology/2013/jul/30/car-hacking-ignition-injunction

O’Kane, S. (2015). Automakers Just Lost the Battle to Stop You from Hacking Your Car.

Retrieved March 25, 2017, from http://www.theverge.com/2015/10/27/9622150/

dmca-exemption-accessing-car-software

SparkFun. (2015). OBD-II to DB9 Cable. Retrieved March 30, 2017, from https://

www.sparkfun.com/products/10087

Smith, C. (2016). The Car Hacker’s Handbook: A Guide for the Penetration Tester. San

Francisco, CA: No Starch Press.

Talbot, S., & Ren, S. (2008). Comparison of FieldBus Systems, CAN, TTCAN, FlexRay

and LIN in Passenger Vehicles. Retrieved March 31, 2017, from http://www.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Hacking the CAN Bus 55

roderick.h.currie@gmail.com	

talbotsystems.com/documents/Comparision_of_FieldBus_Systems_CAN_TTCA

N_FlexRay_and_LIN_in_Passenger_Vehicles.pdf

Twelfth Round Auto. (2017). 5 Best Jack Stands: A Review of the Top Products.

Retrieved May 1, 2017, from https://www.twelfthroundauto.com/best-jack-stands/

U.S. Copyright Office. (1998). The Digital Millennium Copyright Act of 1998 - U.S.

Copyright Office Summary. Retrieved March 25, 2017, from https://www.

copyright.gov/legislation/dmca.pdf

Verdult, R., Garcia, F., & Ege, B. (2015). Dismantling Megamos Crypto: Wirelessly

Lockpicking a Vehicle Immobilizer. Retrieved March 23, 2017, from https://www.

usenix.org/sites/default/files/sec15_supplement.pdf

Walter, P. (2015). Step-by-step guide: Installing the Lawicel CANUSB adapter on Linux.

Retrieved April 4, 2017, from http://pascal-walter.blogspot.com/2015/08/

installing-lawicel-canusb-on-linux.html

Wiens, K. (2015). We Can’t Let John Deere Destroy the Very Idea of Ownership.

Retrieved March 25, 2017, from https://www.wired.com/2015/04/dmca-

ownership-john-deere/

Wikipedia. (2009). File:Socketcan.png. Retrieved March 30, 2017, from https://en.

wikipedia.org/wiki/File:Socketcan.png

Wikipedia. (2014). File:CAN-Bus-frame in base format without stuffbits.svg. Retrieved

November 27, 2015, from https://commons.wikimedia.org/wiki/File:CAN-Bus-

frame_in_base_format_without_stuffbits.svg

Last Updated: May 28th, 2018

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Rocky Mountain 2018 Denver, COUS Jun 04, 2018 - Jun 09, 2018 Live Event

SEC487: Open-Source Intel Beta Two Denver, COUS Jun 04, 2018 - Jun 09, 2018 Live Event

SANS London June 2018 London, GB Jun 04, 2018 - Jun 12, 2018 Live Event

DFIR Summit & Training 2018 Austin, TXUS Jun 07, 2018 - Jun 14, 2018 Live Event

Cloud INsecurity Summit - Washington DC Crystal City, VAUS Jun 08, 2018 - Jun 08, 2018 Live Event

SANS Milan June 2018 Milan, IT Jun 11, 2018 - Jun 16, 2018 Live Event

Cloud INsecurity Summit - Austin Austin, TXUS Jun 11, 2018 - Jun 11, 2018 Live Event

SANS Philippines 2018 Manila, PH Jun 18, 2018 - Jun 23, 2018 Live Event

SANS Cyber Defence Japan 2018 Tokyo, JP Jun 18, 2018 - Jun 30, 2018 Live Event

SANS Oslo June 2018 Oslo, NO Jun 18, 2018 - Jun 23, 2018 Live Event

SANS ICS Europe Summit and Training 2018 Munich, DE Jun 18, 2018 - Jun 23, 2018 Live Event

SANS Crystal City 2018 Arlington, VAUS Jun 18, 2018 - Jun 23, 2018 Live Event

SANS Cyber Defence Canberra 2018 Canberra, AU Jun 25, 2018 - Jul 07, 2018 Live Event

SANS Minneapolis 2018 Minneapolis, MNUS Jun 25, 2018 - Jun 30, 2018 Live Event

SANS Paris June 2018 Paris, FR Jun 25, 2018 - Jun 30, 2018 Live Event

SANS Vancouver 2018 Vancouver, BCCA Jun 25, 2018 - Jun 30, 2018 Live Event

SANS London July 2018 London, GB Jul 02, 2018 - Jul 07, 2018 Live Event

SANS Cyber Defence Singapore 2018 Singapore, SG Jul 09, 2018 - Jul 14, 2018 Live Event

SANS Charlotte 2018 Charlotte, NCUS Jul 09, 2018 - Jul 14, 2018 Live Event

SANSFIRE 2018 Washington, DCUS Jul 14, 2018 - Jul 21, 2018 Live Event

SANS Malaysia 2018 Kuala Lumpur, MY Jul 16, 2018 - Jul 21, 2018 Live Event

SANS Pen Test Berlin 2018 Berlin, DE Jul 23, 2018 - Jul 28, 2018 Live Event

SANS Cyber Defence Bangalore 2018 Bangalore, IN Jul 23, 2018 - Jul 28, 2018 Live Event

SANS Riyadh July 2018 Riyadh, SA Jul 28, 2018 - Aug 02, 2018 Live Event

Security Operations Summit & Training 2018 New Orleans, LAUS Jul 30, 2018 - Aug 06, 2018 Live Event

SANS Pittsburgh 2018 Pittsburgh, PAUS Jul 30, 2018 - Aug 04, 2018 Live Event

SANS August Sydney 2018 Sydney, AU Aug 06, 2018 - Aug 25, 2018 Live Event

SANS San Antonio 2018 San Antonio, TXUS Aug 06, 2018 - Aug 11, 2018 Live Event

SANS Boston Summer 2018 Boston, MAUS Aug 06, 2018 - Aug 11, 2018 Live Event

Security Awareness Summit & Training 2018 Charleston, SCUS Aug 06, 2018 - Aug 15, 2018 Live Event

SANS Hyderabad 2018 Hyderabad, IN Aug 06, 2018 - Aug 11, 2018 Live Event

SANS New York City Summer 2018 New York City, NYUS Aug 13, 2018 - Aug 18, 2018 Live Event

SANS Atlanta 2018 OnlineGAUS May 29, 2018 - Jun 03, 2018 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=51125
http://www.sans.org/link.php?id=51125
http://www.sans.org/link.php?id=53970
http://www.sans.org/link.php?id=53970
http://www.sans.org/link.php?id=50955
http://www.sans.org/link.php?id=50955
http://www.sans.org/link.php?id=50765
http://www.sans.org/link.php?id=50765
http://www.sans.org/link.php?id=54030
http://www.sans.org/link.php?id=54030
http://www.sans.org/link.php?id=53305
http://www.sans.org/link.php?id=53305
http://www.sans.org/link.php?id=54040
http://www.sans.org/link.php?id=54040
http://www.sans.org/link.php?id=49910
http://www.sans.org/link.php?id=49910
http://www.sans.org/link.php?id=49905
http://www.sans.org/link.php?id=49905
http://www.sans.org/link.php?id=52615
http://www.sans.org/link.php?id=52615
http://www.sans.org/link.php?id=51880
http://www.sans.org/link.php?id=51880
http://www.sans.org/link.php?id=51530
http://www.sans.org/link.php?id=51530
http://www.sans.org/link.php?id=49915
http://www.sans.org/link.php?id=49915
http://www.sans.org/link.php?id=51130
http://www.sans.org/link.php?id=51130
http://www.sans.org/link.php?id=51655
http://www.sans.org/link.php?id=51655
http://www.sans.org/link.php?id=51535
http://www.sans.org/link.php?id=51535
http://www.sans.org/link.php?id=52365
http://www.sans.org/link.php?id=52365
http://www.sans.org/link.php?id=49880
http://www.sans.org/link.php?id=49880
http://www.sans.org/link.php?id=52020
http://www.sans.org/link.php?id=52020
http://www.sans.org/link.php?id=51135
http://www.sans.org/link.php?id=51135
http://www.sans.org/link.php?id=53375
http://www.sans.org/link.php?id=53375
http://www.sans.org/link.php?id=52375
http://www.sans.org/link.php?id=52375
http://www.sans.org/link.php?id=53010
http://www.sans.org/link.php?id=53010
http://www.sans.org/link.php?id=54250
http://www.sans.org/link.php?id=54250
http://www.sans.org/link.php?id=51235
http://www.sans.org/link.php?id=51235
http://www.sans.org/link.php?id=52840
http://www.sans.org/link.php?id=52840
http://www.sans.org/link.php?id=51270
http://www.sans.org/link.php?id=51270
http://www.sans.org/link.php?id=51150
http://www.sans.org/link.php?id=51150
http://www.sans.org/link.php?id=51140
http://www.sans.org/link.php?id=51140
http://www.sans.org/link.php?id=51015
http://www.sans.org/link.php?id=51015
http://www.sans.org/link.php?id=49920
http://www.sans.org/link.php?id=49920
http://www.sans.org/link.php?id=51155
http://www.sans.org/link.php?id=51155
http://www.sans.org/link.php?id=51120
http://www.sans.org/link.php?id=51120
http://www.sans.org/link.php?id=1032
http://www.sans.org/link.php?id=1032

